Exercise 4

Follow the steps below to find $f(t)$ when

$$
F(s)=\frac{1}{s^{2}}-\frac{1}{s \sinh s} .
$$

Start with the observation that the isolated singularities of $F(s)$ are

$$
s_{0}=0, \quad s_{n}=n \pi i, \quad \overline{s_{n}}=-n \pi i \quad(n=1,2, \ldots) .
$$

(a) Use the Laurent series found in Exercise 5, Sec. 73, to show that the function $e^{s t} F(s)$ has a removable singularity at $s=s_{0}$, with residue 0 .
(b) Use Theorem 2 in Sec. 83 to show that

$$
\operatorname{Res}_{s=s_{n}}\left[e^{s t} F(s)\right]=\frac{(-1)^{n} i \exp (i n \pi t)}{n \pi}
$$

and

$$
\operatorname{Res}_{s=\bar{S}_{n}}\left[e^{s t} F(s)\right]=\frac{-(-1)^{n} i \exp (-i n \pi t)}{n \pi} .
$$

(c) Show how it follows from parts (a) and (b), together with series (7), Sec. 95, that

$$
f(t)=\sum_{n=1}^{\infty}\left\{\underset{s=s_{n}}{\operatorname{Res}_{n}}\left[e^{s t} F(s)\right]+\underset{s=\overline{s_{n}}}{\operatorname{Res}}\left[e^{s t} F(s)\right]\right\}=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi t
$$

Solution

Write the function so that it has one term.

$$
\begin{aligned}
F(s) & =\frac{1}{s^{2}}-\frac{1}{s \sinh s} \\
& =\frac{\sinh s}{s^{2} \sinh s}-\frac{s}{s^{2} \sinh s} \\
& =\frac{\sinh s-s}{s^{2} \sinh s}
\end{aligned}
$$

Find the singularities - they occur where the denominator is equal to zero.

$$
s^{2}=0 \quad \text { or } \quad \sinh s=0
$$

Use the identity $\sinh s=-i \sin i s$.

$$
\begin{array}{lll}
s=0 \quad \text { or } \quad \begin{aligned}
-i \sin i s & =0 \\
& \\
& \sin i s \\
& =0 \\
i s & =n \pi,
\end{aligned} \quad n=0, \pm 1, \pm 2, \ldots \\
s & =-i n \pi, &
\end{array}
$$

Hence, there are an infinite number of singularities. To be consistent with Churchill and Brown's notation, let

$$
s_{0}=0, \quad s_{n}=i n \pi, \quad \overline{s_{n}}=-i n \pi, \quad n=1,2, \ldots
$$

Part (a)

According to Exercise 5, Sec. 73 on page 225,

$$
\frac{1}{z^{2} \sinh z}=\frac{1}{z^{3}}-\frac{1}{6} \cdot \frac{1}{z}+\frac{7}{360} z+\cdots .
$$

The aim here is to determine

$$
{\underset{s}{\operatorname{Res}}}_{\substack{0}}\left[e^{s t} F(s)\right]
$$

by writing out the Laurent series of $e^{s t} F(s)$ and inspecting the coefficient of $1 / s$.

$$
\begin{aligned}
e^{s t} F(s) & =\frac{\sinh s-s}{s^{2} \sinh s} e^{s t} \\
& =(\sinh s-s) \frac{1}{s^{2} \sinh s} e^{s t} .
\end{aligned}
$$

In order to find the residue at $s=s_{0}=0$, expand each of the functions about $s=0$.

$$
\begin{aligned}
& =\left(s+\frac{s^{3}}{6}+\frac{s^{5}}{120}+\cdots-s\right)\left(\frac{1}{s^{3}}-\frac{1}{6 s}+\frac{7}{360} s+\cdots\right)\left(1+t s+\frac{t^{2} s^{2}}{2}+\cdots\right) \\
& =\left(\frac{s^{3}}{6}+\frac{s^{5}}{120}+\cdots\right)\left(\frac{1}{s^{3}}-\frac{1}{6 s}+\frac{7}{360} s+\cdots\right)\left(1+t s+\frac{t^{2} s^{2}}{2}+\cdots\right)
\end{aligned}
$$

Proceed with the multiplication.

$$
=\frac{1}{6}+\frac{t}{6} s+\left(-\frac{7}{360}+\frac{t^{2}}{12}\right) s^{2}+\left(-\frac{7 t}{360}+\frac{t^{3}}{36}\right) s^{3}+\cdots
$$

The coefficient of $1 / s$ is the residue at $s=0$. Thus,

$$
\underset{s=s_{0}}{\operatorname{Res}}\left[e^{s t} F(s)\right]=0 .
$$

Part (b)

Theorem 2 in Sec. 83 reads as follows: Assume there are two analytic functions, p and q, at a point z_{0}. If

$$
p\left(z_{0}\right) \neq 0, \quad q\left(z_{0}\right)=0, \quad \text { and } \quad q^{\prime}\left(z_{0}\right) \neq 0,
$$

then z_{0} is a simple pole of the quotient $p(z) / q(z)$ and

$$
\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)} .
$$

In order to evaluate the residue of $e^{s t} F(s)$ at s_{n} and $\overline{s_{n}}$, choose

$$
p(s)=e^{s t}(\sinh s-s) \quad \text { and } \quad q(s)=s^{2} \sinh s .
$$

Then

$$
q^{\prime}(s)=s(s \cosh s+2 \sinh s) .
$$

Check that the hypotheses of the theorem are satisfied for both $s_{n}=i n \pi$ and $\overline{s_{n}}=-i n \pi$.

$$
\begin{aligned}
p(i n \pi) & =e^{(i n \pi) t}(\sinh i n \pi-i n \pi)=e^{i n \pi t}(i \sin n \pi-i n \pi)=e^{i n \pi t}(-i n \pi) \neq 0 \\
p(-i n \pi) & =e^{(-i n \pi) t}[\sinh (-i n \pi)-(-i n \pi)]=e^{-i n \pi t}(-i \sin n \pi+i n \pi)=e^{-i n \pi t}(i n \pi) \neq 0 \\
q(i n \pi) & =(i n \pi)^{2} \sinh (i n \pi)=-n^{2} \pi^{2}[i \sin (n \pi)]=0 \\
q(-i n \pi) & =(-i n \pi)^{2} \sinh (-i n \pi)=-n^{2} \pi^{2}[-i \sin (n \pi)]=0 \\
q^{\prime}(i n \pi) & =(i n \pi)(i n \pi \cosh i n \pi+2 \sinh i n \pi)=i n \pi(i n \pi \cos n \pi+2 i \sin n \pi)=(i n \pi)^{2} \cos n \pi \neq 0 \\
q^{\prime}(-i n \pi) & =(-i n \pi)[(-i n \pi) \cosh (-i n \pi)+2 \sinh (-i n \pi)]=-i n \pi(-i n \pi \cos n \pi-2 i \sin n \pi)=(-i n \pi)^{2} \cos n \pi \neq 0
\end{aligned}
$$

Consequently, $s_{n}=i n \pi$ and $\overline{s_{n}}=-i n \pi$ are simple poles of $e^{s t} F(s)$, and
$\underset{s=s_{n}}{\operatorname{Res}} e^{s t} F(s)=\frac{p\left(s_{n}\right)}{q^{\prime}\left(s_{n}\right)}=\frac{p(i n \pi)}{q^{\prime}(i n \pi)}=\frac{e^{i n \pi t}(-i n \pi)}{(i n \pi)^{2} \cos n \pi}=-\frac{e^{i n \pi t}}{i n \pi(-1)^{n}} \times \frac{i(-1)^{n}}{i(-1)^{n}}=\frac{(-1)^{n} i \exp (i n \pi t)}{n \pi}$
$\underset{s=\overline{s_{n}}}{\operatorname{Res}} e^{s t} F(s)=\frac{p\left(\overline{s_{n}}\right)}{q^{\prime}\left(\overline{s_{n}}\right)}=\frac{p(-i n \pi)}{q^{\prime}(-i n \pi)}=\frac{e^{-i n \pi t}(i n \pi)}{(-i n \pi)^{2} \cos n \pi}=\frac{e^{-i n \pi t}}{i n \pi(-1)^{n}} \times \frac{i(-1)^{n}}{i(-1)^{n}}=\frac{-(-1)^{n} i \exp (-i n \pi t)}{n \pi}$
by Theorem 2 in Sec. 83 .

Part (c)

According to Equation (7) in Sec. 95 on page 296, the inverse Laplace transform is obtained by summing the residues of $e^{s t} F(s)$ at each of the singularities. Note that each singularity lies on the complex axis, which is to the left of any vertical line on the right half of the complex plane.

$$
\begin{aligned}
f(t) & =\operatorname{Res}_{s=s_{0}} e^{s t} F(s)+\sum_{n=1}^{\infty} \operatorname{Res}_{s=s_{n}} e^{s t} F(s)+\sum_{n=1}^{\infty} \operatorname{Res}_{s=S_{n}} e^{s t} F(s) \\
& =0+\sum_{n=1}^{\infty} \frac{(-1)^{n} i \exp (i n \pi t)}{n \pi}+\sum_{n=1}^{\infty} \frac{-(-1)^{n} i \exp (-i n \pi t)}{n \pi} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} i}{n \pi}\left(e^{i n \pi t}-e^{-i n \pi t}\right) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} i}{n \pi}(2 i \sin n \pi t) \\
& =\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi t
\end{aligned}
$$

